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ABSTRACT  

This article provides a comprehensive exploration of univariate and multivariate hypothesis tests commonly 

employed to assess the normality of data distributions. Normality is a foundational assumption in various 

statistical analyses, rendering the evaluation of data distribution conformity to the normal distribution 

paramount. In this article, we discuss the principles behind univariate tests, such as the Kolmogorov-Smirnov 

test, Anderson-Darling test, and Shapiro-Wilk test, as well as multivariate tests, including the Mahalanobis 

distance and Mardia's multivariate skewness and kurtosis tests. The article aims to aid researchers and 

practitioners in selecting the most suitable tests for their specific data analysis requirements. 
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    INTRODUCTION 

The normal distribution, often referred to as the Gaussian distribution, stands as one of the 

cornerstones of statistical theory and practice. Its ubiquity in scientific disciplines and 

practical applications arises from its mathematical elegance and its alignment with real-

world phenomena (Yang, Yu, Xie, & Zhang, 2011). Central to its significance is the 

assumption that many statistical techniques are anchored in the belief that the data under 

consideration follows a normal distribution. Consequently, assessing the conformity of data 

to the normal distribution becomes an exercise of paramount importance, carrying far-

reaching implications for statistical analyses and their reliability. This article embarks on a 

comprehensive exploration of the methodologies employed in the validation of this 

fundamental assumption, delving into both univariate and multivariate hypothesis tests, 

which constitute the bedrock of such assessments (Garthwaite, Kadane, & O'Hagan, 2005). 

Understanding the normal distribution, both theoretically and practically, allows for the 

application of an extensive range of statistical methods that facilitate hypothesis testing, 

parameter estimation, and inferential analysis (Boylan & Cho, 2012). When data adheres 

to a normal distribution, the outcomes of statistical tests and estimations tend to be more 

accurate and robust. Consequently, many statistical techniques, such as t-tests, analysis 

of variance (ANOVA), and linear regression, assume that the underlying data follows a 

normal distribution. In the absence of such conformity, the results of these analyses may 

be skewed, leading to erroneous conclusions. Therefore, the very premise of numerous 

statistical methods relies on the assumption that data approximates a normal distribution 

(Hoekstra, Kiers, & Johnson, 2012). 

However, in the real world, data seldom conforms perfectly to the idealized assumptions 

of statistical techniques. In practice, deviations from the normal distribution are common 

due to various factors, such as sampling variability, measurement error, or the inherent 

complexity of the investigation. As a result, it becomes necessary to assess the degree to 

which data adheres to the normal distribution (Dennis, Ponciano, Lele, Taper, & Staples, 

2006). This assessment allows researchers and practitioners to make informed decisions 

about the suitability of a given statistical analysis. To this end, a suite of statistical tools 

and tests has been developed to rigorously evaluate normality. 

In this article, we focus on these evaluation tools, categorizing them into univariate and 

multivariate hypothesis tests. The selection of these tests depends on the nature of the 

data, whether it is univariate (comprised of a single variable) or multivariate (involving 

multiple variables). By providing a comprehensive overview of these tests, we aim to equip 

researchers and practitioners with the knowledge and tools necessary to make sound 

decisions about their data analysis strategies. 
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UNIVARIATE NORMALITY HYPOTHESIS TESTS 

Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test assesses whether a given dataset follows a normal 

distribution by comparing the empirical cumulative distribution function (ECDF) to the 

theoretical cumulative distribution function of the normal distribution. It calculates the 

maximum vertical difference between the two functions (Berger & Zhou, 2014). Small and 

Medium Samples (n > 50) The Kolmogorov-Smirnov test is appropriate and usually gives 

reliable results. 

 

Anderson-Darling Test 

The Anderson-Darling test extends the Kolmogorov-Smirnov test by assigning more weight 

to the tails of the distribution. Used when there are Large Samples (n ≥ 100). It provides a 

more robust evaluation of normality, particularly when focusing on deviations in the 

distribution's tails (Nelson, 1998). 

 

Shapiro-Wilk Test 

The Shapiro-Wilk test assesses normality by considering the correlation between the data 

and the expected values of a normal distribution. It is particularly effective for small sample 

sizes, used when there is a small sample (n < 50), and is a popular choice for univariate 

normality testing (Hanusz, Tarasinska, & Zielinski, 2016).  

 

Jarque-Bera Test 

A variation of the Lagrange multiplier test is the Jarque-Bera test for normality. Many 

statistical tests, such as the t-test and the F-test, are based on the assumption of normality. 

To verify normality, the Jarque-Bera test is usually performed before one of these tests. 

Alternative normality tests (such as Shapiro-Wilk) are used for sample sizes (n<2000) and 

are usually used for large data sets, as they are unreliable for n values larger than 2000. 

In particular, the test looks for similarities between the skewness and kurtosis of the data 

and the normal distribution. The data can be in any of the following formats: 

 Data in Time Series.  

 Regression model errors 

 Information in a Vector. 

Kurtosis shows how "crested" the distribution is and how much data is in the tails. A 

distribution that is properly distributed is perfectly symmetrical about the mean and has 

zero skewness. The test can be carried out without any knowledge of the data's mean or 

standard deviation (Thadewald & Büning, 2007). 

 

D'Agostino–Pearson Omnibus Test 
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The skewness (skewness) and kurtosis (slope) values are computed using this approach 

to determine the degree to which the data resembles a Gaussian distribution. If the data 

set is not normally distributed, this test uses a combination of kurtosis and skewness 

statistics to check. If the data is normally distributed, the test statistic has a chi-square 

distribution with two degrees of freedom. However, data sets with fewer than 20 elements 

shouldn't often use this test (Widhiarso & UGM, 2012). 

 

Lilliefors Test 

The Kolmogorov-Smirnov test can be performed correctly if the distribution is fully 

specified, i.e. not only normal but also its mean and standard deviation are known. Without 

specifying which normal distribution the data come from, i.e. without describing the 

expected value and variance of the distribution, this test examines the hypothesis whether 

the data represent a normally distributed population. In other words, the Lilliefors test 

determines whether the data come from a distribution that is part of the Normal family when 

the population mean and variance are unknown (the sample provides estimates for these 

variables). In other words, when extrapolating from a sample, some features of the 

distribution cannot be used by the Kolmogorov-Smirnov test, or at least important tabular 

values cannot be used. Sample Lilliefors table data are compared when calculating 

Kolmogorov-Smirnov test statistics (Lilliefors, 1967). The Lilliefors test is particularly 

suitable for small (n < 30) and medium-sized samples (n = 30-100). In such samples, the 

power and accuracy of the test are usually adequate. In large samples (n > 100), the results 

of the test may be more reliable, but there is a risk that the test becomes hypersensitive. 

 

Cramer Von Mises Test 

A goodness-of-fit test of this kind is used to ascertain if a given collection of data is regularly 

distributed or not. This presumption is frequently used in regression, ANOVA, t-tests, and 

other statistical tests. The biggest difference between the theoretical distribution function 

(CDF) and the empirical distribution function (EDF) is computed using this test, which is 

used on ordinal data (Yildirim & Gökpinar, 2012). Medium-sized samples (n = 30-100) 

enhance the statistical power of the Cramér-von Mises test, yielding more robust and 

reliable results. Such sample sizes are generally adequate for evaluating conformity to the 

normal distribution. Additionally, when dealing with large samples (n > 100), the reliability 

of the test outcomes is further increased. However, it is crucial to note that with larger 

samples, the test's sensitivity is heightened, leading to statistically significant results even 

for minor deviations from the normal distribution. Consequently, in such scenarios, it is 

essential to interpret the test results not solely based on statistical significance but also 

considering the practical magnitude and significance of the deviations  (Conover, 1999). 

 

     MULTIVARIATE HYPOTHESIS TESTS 
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Mahalanobis Distance 

Multivariate data often require multivariate tests. The Mahalanobis distance measures how 

far an observation deviates from the multivariate mean in units of the data's covariance 

structure. A large Mahalanobis distance indicates a departure from multivariate normality. 

For Mahalanobis distance, medium-sized samples (n = 30-100) and larger samples (n > 

100) are more appropriate. These sample sizes increase the likelihood of meeting the 

assumption of multivariate normality, thus providing more reliable results for Mahalanobis 

distance calculations (Manly & Manly, 1994).  

 

Mardia's Multivariate Skewness and Kurtosis Tests 

Mardia's tests assess multivariate skewness and kurtosis, two essential aspects of 

multivariate normality. High values of these statistics suggest non-normality in the data 

distribution. These tests are particularly valuable when investigating the normality of 

multiple variables simultaneously For small samples (n < 50), the statistical power of 

Mardia's tests can be diminished, potentially limiting the reliability of the results. Mardia's 

tests tend to be more robust and valid when applied to medium (n = 50-200) and large 

samples (n > 200). However, with very large samples (n > 500), the tests may become 

excessively sensitive, leading to situations where even minor deviations from normality are 

detected as statistically significant (Izenman, 2008). 

 

Henze-Zirkler Test 

The Henze-Zirkler test gauges the separation between two distribution functions using a 

non-negative functional distance. The test statistic is roughly log-normally distributed if the 

data are multivariate normal. First, the smoothness parameter, variance, and mean are 

computed. Next, the p-value is estimated after the variance and mean have been log-

normalized (Henze & Zirkler, 1990). The Henze-Zirkler test evaluates the adherence of a 

dataset to a normal distribution. While there's no strict ceiling on sample size, it's typically 

advised to have a minimum of 50 to 100 samples. Larger samples enhance the test's 

reliability in representing the population (Hair, 2009). 

 

Multivariate Q-Q Plot Test 

A graphical technique for assessing whether a data set adheres to a multivariate normal 

distribution is the multivariate Q-Q plot. Using the same mean and covariance matrix, it 

compares the data's quantiles versus those of a multivariate normal distribution. The plot's 

points will roughly follow a straight line if the data is multivariate normal (Kutner, 

Nachtsheim, Neter, & Li, 2005). 

To ensure the reliability of the Q-Q plot method for assessing normality, it is recommended 

that the sample size be at least ( n ≥ 20 ). Larger sample sizes generally enhance the 

robustness of the results, providing a more accurate reflection of the data's distribution. 

Ensuring an adequate sample size is crucial for minimizing the effects of sampling 
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variability and for detecting deviations from normality more effectively. This threshold helps 

to ensure that the graphical assessment yields valid and interpretable results, thereby 

facilitating more accurate statistical inferences (Alpar, 2014). 

 

Doornink-Hensen Test 

For multivariate normality, the Doornik-Hansen test is performed using a multivariate data 

set that has been adjusted to guarantee independence. This test is the multivariate 

equivalent of the univariate normalcy test, which Doornik and Hansen created in 1994. The 

test statistic was developed using skewness and kurtosis coefficients. One can convert the 

multivariate normal distribution into separate standard normal distributions by using 

population values. This test uses the data's determinant and moment matrices to assess 

divergence from the normal distribution. It is possible to compute univariate curvature and 

steepness coefficients using the translated observation values (Doornik & Hansen, 1994). 

For the Doornik-Hansen test, it is recommended that the sample size be at least 20 to 

ensure a minimum level of reliability. However, for more robust and dependable results, a 

sample size between 50 and 100 is advised. Larger sample sizes reduce the influence of 

sampling variability, enhance the test's statistical power, and provide a more accurate 

assessment of multivariate normality. Ensuring an adequate sample size is crucial for 

minimizing Type I and Type II errors, thereby facilitating more precise and valid statistical 

inference (Doornik & Hansen, 2008). 

 

Choosing the Right Test 

Selecting the appropriate test for normality assessment depends on several factors: 

 

Data Type: Univariate tests are suitable for univariate data, while multivariate tests are 

designed for multivariate data. 

Sample Size: Smaller sample sizes may benefit from more robust univariate tests like the 

Shapiro-Wilk test. 

Data Structure: The choice of test may depend on the correlation structure between 

variables, with multivariate tests being essential when dealing with correlated data. 

Practical Considerations 

Data Transformation: In cases where data do not meet normality assumptions, 

transformations (e.g., logarithmic or Box-Cox) can be applied to approximate a normal 

distribution. 

Robust Techniques: When normality assumptions are not met, using robust statistical 

methods, which are less sensitive to deviations from normality, can be a valid alternative. 

 

    CONCLUSIONS 
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Assessing the normality of data distributions is a fundamental step in statistical analysis. 

Univariate and multivariate hypothesis tests provide essential tools for researchers and 

practitioners to evaluate data conformity to the normal distribution. Careful consideration 

of the data type, sample size, and correlation structure should guide the choice of the most 

appropriate test. In cases where normality assumptions are not met, data transformation 

or the application of robust techniques can ensure accurate statistical analysis. This article 

serves as a valuable resource for those seeking to make informed decisions regarding the 

assessment of normality in their data. 
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