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ABSTRACT  

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disorder characterized by 

unexplained fatigue, post-exertional malaise, unrefreshing sleep, and cognitive impairment or orthostatic 

intolerance. Due to the absence of a recognized laboratory diagnostic test, diagnosis relies on patient history 

and physical examination. This study aimed to identify significant metabolomic markers and employ machine 

learning techniques for the classification of ME/CFS. Utilizing open-access metabolomics data from 26 

ME/CFS patients and 26 controls, we implemented a comprehensive data preprocessing and modeling 

framework. Feature selection was performed using Random Forest, and data normalization was achieved 

through standardization. A Gaussian Naive Bayes model was trained and validated using 5-fold cross-

validation. The model exhibited an accuracy of 0.786, sensitivity of 0.952, specificity of 0.619, and an F1 

score of 0.816. These results indicate a high efficacy in identifying positive cases of ME/CFS. 
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    INTRODUCTION 

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by 

unexplained fatigue, post-exertional malaise, unrefreshing sleep, and either cognitive 

impairment or orthostatic intolerance (Encephalomyelitis, 2015). Since there isn't a 

recognized laboratory diagnostic test, the diagnosis is made based on the patient's medical 

history, physical examination, and rule out other conditions. A sore throat and cervical 

lymphadenopathy are common prodromes associated with infection that patients with 

ME/CFS often report (Encephalomyelitis, 2015). Irritable bowel syndrome (IBS) is thought 

to affect 35–90% of patients (Aaron et al., 2001; Hausteiner-Wiehle & Henningsen, 2014), 

as opposed to 10–20% of the general population (Canavan, West, & Card, 2014). 

Given that chronic fatigue is a multifactorial disorder, it is unlikely that an objective measure 

for fatigue conditions will be found, such as a verified single biomarker or biosignature 

made up of a small number of biomarkers unless the essence of the disorder, its causes, 

and its pathophysiology are identified. To classify a cohort of patients into eleven 

categories, ranging from mild to extreme fatigue, however, it has recently been 

demonstrated (Erasmus, Steffens, Van Reenen, Vorster, & Reinecke, 2019) that data from 

a battery of conventional tests gave some objective markers to complement clinical and 

lifestyle data.  Furthermore, studies on metabolomics have shed light on conditions similar 

in complexity to chronic fatigue, such as irritable bowel syndrome (Fourie et al., 2016), 

fibromyalgia syndrome (Hackshaw et al., 2019), and chronic widespread pain (Freidin et 

al., 2018). Similarly, the application of metabolomics techniques through intervention 

research yielded significant insights into experimental investigations concerning acute 

alcohol intake (Irwin et al., 2018), and nutrition (Wittwer et al., 2011). 

Recent developments in computer technology have greatly increased the range of fields in 

which machine learning is applied, most notably the healthcare industry (Adams, Sepich‐

Poore, Miller‐Montgomery, & Knight, 2022). In order to estimate new data outcomes, 

machine learning typically entails building predictive models and spotting data patterns 

(Radakovich, Nagy, & Nazha, 2020). The goal is to derive insights from the data that 

already exists (Camacho, Collins, Powers, Costello, & Collins, 2018). New approaches to 

disease categorization and diagnosis can be developed by combining metabolomics data 

with machine learning (Wu et al., 2022; Zhang et al., 2021). In general, substantial potential 

for machine learning applications in healthcare has been opened by advances in big data 

and artificial intelligence technologies. In this study, we aimed to examine the importance 

of metabolomics factors in ME/CFS patients and to distinguish ME/CFS using these factors. 

METHODS 

Participant and Data 

Open-access metabolomics data from controls and ME/CFS patients were used in this 

investigation [2]. There were 26 ME/CFS patients and 26 controls among the all-female 
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participants. Data from plasma samples utilized in the metabolomics panel were acquired 

for 768 identified compounds. 

Data Preprocessing 

To preprocess and model the data, we utilized Random Forest for feature selection, 

normalization techniques, Naive Bayes for modeling, and 5-fold cross-validation for 

validation, with performance evaluated using accuracy, sensitivity, specificity, and F1 

score. Random Forest classifier was trained to identify feature importances, and the top 

features were selected based on these scores. The data was then normalized using 

standardization to ensure consistency across features. A Gaussian Naive Bayes (Kamel, 

Abdulah, & Al-Tuwaijari, 2019) model was subsequently trained on the normalized data. 

To assess the model's generalizability, 5-fold cross-validation was employed, where the 

dataset was divided into five parts, and the model was iteratively trained and tested 

(Fushiki, 2011). The performance of the model was measured using accuracy, sensitivity, 

specificity, and F1 score, calculated as follows: accuracy as the ratio of correctly predicted 

instances to total instances, sensitivity as the ratio of true positives to the sum of true 

positives and false negatives, specificity as the ratio of true negatives to the sum of true 

negatives and false positives, and the F1 score as the harmonic mean of precision and 

recall. This comprehensive methodology ensured robust feature selection, data 

normalization, model training, and performance evaluation. 

Statistical Analyses 

Univariate statistical analysis was conducted to compare metabolite levels between 

ME/CFS patients and healthy controls. Normal distribution was examined by the Shapiro-

Wilk test. Metabolite levels were summarized as mean ± standard deviation (SD). 

Differences in metabolite levels were assessed using independent samples t-tests. For 

each metabolite, a p-value was calculated to determine the statistical significance of the 

difference between the two groups. A p-value of less than 0.05 was considered statistically 

significant. Analyses were performed using Python 3.9 software and SPSS 28.0 (IBM Corp., 

Armonk, NY, United States) package program. 

RESULTS  

After random forest-based feature selection, the most significant metabolomic features 

were alphaketobutyrate, hydroxy asparagine, indole-lactate, sarcosine, arachidoyl 

carnitine(c20), dihomolinolenoylcholine, linoleoylcholine, oleoylcholine, stearoyl choline, 

gamma-glutamyl valine, leucylglycine, phenylalanylalanine, valylleucine, and dimethyl 

sulfone. The results of group comparisons for these metabolites are presented in Table 1. 

In this study, the univariate statistical analysis revealed significant differences in the levels 

of several metabolites between ME/CFS patients and healthy controls.  

The levels of alphaketobutyrate were significantly higher in ME/CFS patients 

(5246503.808±1772631.799) compared to controls (4017571.269±2185763.392) with a p-

value of 0.031. Hydroxyasparagine levels were also elevated in ME/CFS patients  
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(573425.692±137075.289) versus controls (481279.5±86458.084) with a p-value of 0.006. 

Conversely, indolelactate levels were lower in ME/CFS patients 

(2572602.769±884853.405) compared to controls (3347740.808±1084248.796), with a p-

value of 0.007. Other metabolites with significant differences included sarcosine, 

arachidoylcarnitine (c20), dihomolinolenoylcholine, linoleoylcholine, oleoylcholine, 

stearoylcholine, leucylglycine, phenylalanylalanine, and valylleucine, all showing p-values 

less than 0.05. The leucylglycine and oleoylcholine were notably decreased in ME/CFS 

patients, with p-values of 0.008 and 0.006, respectively. These findings highlight distinct 

metabolic alterations associated with ME/CFS, suggesting potential biomarkers for 

diagnosis and therapeutic targets. 

 

Metabolite name* 
ME/CFS outcome p 

value No Yes 

alphaketobutyrate 4017571.269±2185763.392 5246503.808±1772631.799 0.031 

hydroxyasparagine 481279.5±86458.084 573425.692±137075.289 0.006 

indolelactate 3347740.808±1084248.796 2572602.769±884853.405 0.007 

sarcosine 11734957.308±3355435.095 9880927.5±3252648.976 0.048 

arachidoylcarnitine(c20) 112077.154±73138.417 155622.115±75991.163 0.04 

dihomolinolenoylcholine 143066.231±165173.693 62686.692±33381.024 0.022 

linoleoylcholine 1069924.885±1032038.38 490354.885±304684.426 0.01 

oleoylcholine 497184.346±463913.821 214579.885±127072.909 0.006 

stearoylcholine 455832.731±438699.554 211923.077±138906.689 0.011 

gammaglutamylvaline 1118706.731±552336.404 1452248.692±713351.638 0.065 

leucylglycine 83965.385±73754.139 40506.077±23791.63 0.008 

phenylalanylalanine 207109.115±64803.251 156876.115±47899.172 0.003 

valylleucine 151425.346±85363.49 101872.577±43210.332 0.012 

dimethylsulfone 1462964.885±2836362.33 549959.231±1307674.775 0.142 

*: Metabolite levels are summarized as mean ± SD (standard deviation). 

Table 1. Univariate statistical analysis results 

 

The performance metrics results for the model developed for ME/CFS prediction using these biomarker 

metabolites are presented in Table 2. The model achieves an accuracy of 0.786, indicating that it correctly 

predicts the ME/CFS approximately 78.6%. The sensitivity, or true positive rate, is 0.952, demonstrating that 

the model is highly effective at correctly identifying positive instances. However, the specificity is lower at 

0.619, meaning the model is less effective at correctly identifying negative instances, with a higher rate of 

false positives. The F1 score, which balances precision and recall, is 0.816, reflecting a good balance 

between precision and recall despite the lower specificity. Overall, the model performs well in identifying true 

positive cases but has room for improvement in reducing false positives. 
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Metric Value 

Accuracy 0.786 

Sensitivity 0.952 

Specificity 0.619 

F1-score 0.816 

Table 2. Performance of machine learning model on ME/CFS prediction 

DISCUSSION  

The findings of this study underscore the potential of integrating metabolomics data with 

machine learning techniques to enhance the diagnostic process for ME/CFS.  The results 

of our univariate statistical analysis reveal significant alterations in the metabolite profiles 

of ME/CFS patients compared to healthy controls, underscoring potential biomarkers and 

therapeutic targets for this debilitating condition. Elevated levels of alphaketobutyrate and 

hydroxyasparagine in ME/CFS patients suggest disruptions in amino acid metabolism, 

which may be linked to the pathophysiology of ME/CFS. Conversely, reduced levels of 

indolelactate indicate a possible impairment in tryptophan metabolism. The significant 

differences in choline-containing metabolites, such as dihomolinolenoylcholine, 

linoleoylcholine, oleoylcholine, and stearoylcholine, point towards dysregulation in lipid 

metabolism, which could impact cellular membrane integrity and signaling pathways. 

Additionally, the observed changes in leucylglycine and phenylalanylalanine levels 

highlight disruptions in peptide metabolism. These metabolic disturbances provide insight 

into the biochemical underpinnings of ME/CFS and support the hypothesis that ME/CFS is 

associated with a unique metabolic signature. Further research is necessary to explore the 

mechanistic pathways involved and to validate these metabolites as reliable biomarkers 

for ME/CFS diagnosis and treatment monitoring. The application of Random Forest for 

feature selection proved effective in isolating key metabolomic markers, such as 

alphaketobutyrate and hydroxy asparagine, which significantly contributed to the model’s 

predictive capability.  The high sensitivity of 0.952 indicates that the model is adept at 

identifying true positive cases, which is crucial for early and accurate diagnosis of ME/CFS. 

However, the lower specificity of 0.619 points to a higher rate of false positives, highlighting 

a need for further refinement of the model to better distinguish between ME/CFS and other 

conditions. The use of 5-fold cross-validation provided a robust framework for model 

validation, ensuring that the model’s performance metrics are generalizable and not overly 

fitted to the training data. The F1 score of 0.816 reflects a good balance between precision 

and recall, reinforcing the model’s reliability in practical diagnostic settings.  Metabolomics 

has been studied in recent ME/CFS studies to identify possible biomarkers and metabolic 

anomalies in patients. Numerous metabolites, including sphingomyelins and short-chain 

fatty acids in plasma, as well as abnormalities in the brain's N-acetylaspartate system, 

amino acid route, choline, myo-inositol, and lactate, have been linked to ME/CFS in studies. 

These metabolites contribute to our understanding of the pathophysiology of this intricate 

illness by drawing attention to metabolic anomalies and possible diagnostic biomarkers for 

ME/CFS (R Xiong et al., 2021; Ruoyun Xiong et al., 2021; Yamano, Watanabe, & Kataoka, 

2021).  In the findings of this study, we determined that alphaketobutyrate, hydroxy 

asparagine, indole-lactate, sarcosine, arachidoyl carnitine(c20), dihomolinolenoylcholine, 

linoleoylcholine, oleoylcholine, stearoyl choline, gamma-glutamyl valine, leucylglycine, 
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phenylalanylalanine, valylleucine, and dimethyl sulfone metabolites may be biomarker 

candidates for ME/CFS. In conclusion, this study demonstrates the feasibility of using 

machine learning and metabolomics for the classification of ME/CFS, offering a potential 

pathway towards more objective and reliable diagnostic tools. Continued advancements in 

computational methods and the availability of larger, more diverse datasets will be critical 

in refining these models and improving diagnostic accuracy for ME/CFS. 

CONCLUSIONS 

This study identified metabolomic markers distinguishing Myalgic 

encephalomyelitis/chronic fatigue syndrome (ME/CFS) from healthy controls, highlighting 

significant metabolic differences. A Gaussian Naive Bayes model achieved an accuracy of 

0.786, demonstrating strong capability in predicting ME/CFS. High sensitivity (0.952) 

indicates effective detection of ME/CFS cases, albeit with lower specificity (0.619). These 

findings suggest promising avenues for developing diagnostic biomarkers and 

personalized treatment strategies for ME/CFS. 
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